TRANSFER FUNCTIONS FOR THE TEMPERATURE OF
CURVILINEAR WALLS AND HOLLOW BODIES UNDER
GENERALIZED THERMAL EFFECTS

L. B. Andreeva and N. A, Yaryshev UDC 536.2.01

We obtain in operator form the solution of a heat-transfer problem for bodies under
generalized thermal effects and determine the structure of the transfer functions. We
propose approximate equations for the interaction between the effects in order to calcu-
late the mean volume and mean surface temperatures of the body.

We consider the problem of thermal conductivity for a curvilinear wall or a hollow body formed by
two convex polygons. The walls (body) are made of a homogeneous isotropic material, have volume V,
internal surface S, external surface S,, and are subject to the influence of the following state factors:

1) liquid (gaseous) media with temperatures t;(r) and t,(r) in contact, respectively, with the surfaces
S, and S, of the body;

2) external (superficial) energy sources g, (7) and g, (1) on the surfaces S; and S5,;
3) an internal volume energy source w(7) in the volume V;

4) internal ("convection") energy sinks, the specific intensity of which, b, is directly proportional
to the difference between the local temperature u at the given point of the body and the temperature
w(T) of the medium permeating the body.

It is assumed that the thermophysical properties and heat-transfer coefficients of the body are con-
stant and the energy sources are distributed uniformly over its surface and throughout its volume.

We know [1] that the analytic solution of three-dimensional problems in heat conduction are quite
complex for the above thermal effects. The form of the solution depends on the shape of the body and the
nature of the change in the effects with time. The mathematical formulation of the problem can be signifi-
cantly simplified if, in deriving the heat conduction equation, we consider the temperature u of the body as
a function of one generalized coordinate r, uniquely related to the surface of average temperature 6 inside
the body. In this approach the heat transfer inside the body is determined by the equation of heat conduction

du du 1 do du b w
—_=q - . 1
o ( or? + o dr ar) 0

The equation for the interaction between the surface of average temperature and the generalized coor-
dinate should be specified in the form

o (=Ar" (2)

The choice of (2) is determined by the fact that Eq. (1) can be reduced to a form convenient for sub-
sequent integration, since '

l.d()'si‘ (3)

(4] dr r
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In addition, for n =0, 1, and 2, Eq. (1) becomes the exact equation for one-dimensional problems
in heat conduction [1] for bodies of canonical form (flat plates, cylinders, spheres).

The integral properties of the body (external surfaces and volume) are determined, noting (2), from
the equations

S =4, S,=A4r, V= (7o — ). (4)

nt+1

We do not discuss here the problems of determining the characteristic dimensions r; and r, of the
body or the form vector. Various approaches to their choice are described in [2].

Under the above assumptions, boundary conditions of the following form hold for Eq. (1), taking ac-
count of (3):

ou
—h — | + Go=0 (U=, — 1),
or |,=,2
)
ou
A o + qi=0, Ulr=r, — t1).
T r=r,

At the initial moment of time the température distribution inside the body is assumed to be uniform
u(r, Doy=0. (6)
The solution of Eq. (1), for the Laplace transformed temperature U(r, s) of the body under conditions

2), (5), and (6), can be expressed in terms of transfer functions and generalized thermal effects in the
form

U, s)=Y1Z, +Y,Z, 1+ Y,Z,, (7
where
1 1
Zi=T)+ — Qp Zz'——Tz +— Qz’ (8)
Oy %y
Z,=V + % . 9)

The transfer functions have the following structure:

(—“—)“” (Gl (B)— GoK, ()]

Yl‘_"— Bl 3 , (10)
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o= (VY (12
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Gy=1,(B,) -+ % I, B2,

2

Gy=1, (B — —Z—— Loy (Bu):

1
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a4l o Galy |
T BT
- i v{-2m
o Syt
vO= W T mT D)
= (14)
K, @) = [I_,@—1,@]

" 2sin(vm)

To make the transition from (7) to the true temperature of the body, u(r, 7) is complex and laborious
in the general case, To obtain approximate equations linking the typical temperatures of the body and the
influences it is permissible to replace the exact transfer functions (10)-(12) by approximate expressions
based on the expansions (14). Methods of representing the transforms of the transfer functions in rational
fractional form were given in [1-4].

Because the series converge rapidly the replacement of the exact expression for a transfer function
by an approximate one produces the most tangible results when the temperatures are calculated at the initial
moments of time and the effect of the initial conditions is felt. As time passes the replacement becomes
barely noticeable and the approximate expression more accurately reflects the particular features of the
original transfer function as the number of terms retained in the series increases.

Let us consider an important special case in heat transfer when there are no internal energy sinks
in the body, i.e., b =0. As follows from (13), the parameter p =+v's/a, while the effect Z; and the transfer
function Y; can be rewritten as

1
s (I—Y,—VY)), (15)

the form of the remaining expressions remaining unaltered.

3
Zy= W, Y,

In practical calculations the transfer functions (10), (11), and (15) can be replaced by approximate
expressions of the following form:
__Bi+Bss Y. — Cy+Cis
1445+ A2’ 2 14-As+ A’
_a D, + Dys
TR 1445+ A )

1

(16)

the coefficients of which are found from the equations
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D,=A,—B,—Cy, D,=A4,—B,—C,.

If at the initial moment of time the continuously varying functions u(r, ), z;(7), Z(7), and z,(r) and
their first and second derivatives are zero, we can use an operator relation between the derivative of 2
function and its transform [1, 3]:

drf
di*

Then, after applying the inverse transformation to (7), and noting (15) and (16), we obtain an ap-
proximate differential equation linking the temperature of the body and the thermal effects

L7V [F (5)] =

d?u

A, dr?

du dz dz, a dz
+A1’E‘T‘+u=31 d_:+Bozl+C1 d_;+cdzz+‘;g‘(D 3+D13)- (27)

Equation (47) also holds when the initial conditions are nonzero, if sufficient time has passed since
the beginning of the process and the initial thermal state has ceased to affect the temperature distribution
inside the body.
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The transfer functions (16) and Eq. (27) can be used to determine the typical temperatures of the body
— the average temperatures us, (1) and ug, (1) of the surfaces 8; and §,, and also the mean volume tempera-

ture uy () of the body. The form of the expressions (16) and (25) does not change, only the values of the
coefficients B, C, and D change (the coefficients A; and A, are independent of p).

For the temperature us, (1) the coefficients By,S,» Bi,S,s Co,S;» Ci’si, Dy,s;s and D2,51 are found from
Egs. (17)-(27) in which we have to replace p by p;. In accordance with this, we have to put p =1 when de~
termining the coefficients Bo,SZ: By,S,s Cy,S,5 C1,S2, Dy,s,, and Dy,s, from (20)-(26).

In the calculation of the mean volume temperature uy(r) the coefficients take the form
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Boy = {l“g—ww—] ;
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Div=A,—Biv—Civ; Doy =A;—Bev—Cov.

The transfer functions (16) and the differential equation for the influence (27) can be used to solve ap-
proximately problems in heat conduction for curvilinear walls and hollow bodies in various heat-transfer
conditions when the derivation of an exact solution is difficult. We note that the coefficient A; approximately
determines the rate of heat transfer of the body under generalized thermal influences. In stationary con-
ditions, from (27) we obtain

a
u(p)=Bg, -+ Cz, +— Dyz,. (28)
3

It is convenient to determine the particular features of heat transfer in bodies subject to periodic
thermal conditions using amplitude-phase frequency characteristics, the equations of which are obfained
by replacing s in (16) by iw, where w is the cyclic frequency of the influences.
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Where necessary the accuracy of equations of the form (27) can be improved by retaining terms of
higher order in the expansions of the transfer functions.

NOTATION

T is the time;
4% is the density;
c is the specific heat of the body;
A, a are the coefficients of thermal conductivity and thermal diffusivity of the material

of the body;
Oy, Qg are the coefficients of heat transfer for the surfaces S; and S;
29 (1), 2Z9(T), Z3(7) are the generalized thermal influences;
Zi(s), Zy(8), Zs(s) are the images of the influences;
Ty, Ty, V, @y, Q, W are the Laplace transforms of the functions t,(7), ty(7), v(7), 9y(7), 9y (1), and w(r);
I, K, are the modified cylinder functions of arbitrary regl index v;
s is the Laplace transform parameter;
p=r/Ty is the relative coordinate;
Py =11/ Ty
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